Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / CLOUD / PyTorch on Azure: Full support for PyTorch 1.2

PyTorch on Azure: Full support for PyTorch 1.2

August 28, 2019 by cbn Leave a Comment

Congratulations to the PyTorch community on the release of PyTorch 1.2! Last fall, as part of our dedication to open source AI, we made PyTorch one of the primary, fully supported training frameworks on Azure. PyTorch is supported across many of our AI platform services and our developers participate in the PyTorch community, contributing key improvements to the code base. Today we would like to share the many ways you can use PyTorch 1.2 on Azure and highlight some of the contributions we’ve made to help customers take their PyTorch models from training to production.

PyTorch 1.2 on Azure

Getting started with PyTorch on Azure is easy and a great way to train and deploy your PyTorch models. We’ve integrated PyTorch 1.2 in the following Azure services so you can utilize the latest features:

  • Azure Machine Learning service – Azure Machine Learning streamlines the building, training, and deployment of machine learning models. Azure Machine Learning’s Python SDK has a dedicated PyTorch estimator that makes it easy to run PyTorch training scripts on any compute target you choose, whether it’s your local machine, a single virtual machine (VM) in Azure, or a GPU cluster in Azure. Learn how to train Pytorch deep learning models at scale with Azure Machine Learning.
  • Azure Notebooks – Azure Notebooks provides a free, cloud-hosted Jupyter notebook server with PyTorch 1.2 pre-installed. To learn more, check out the PyTorch tutorials and examples.
  • Data Science Virtual Machine – Data Science Virtual Machines are pre-configured with popular data science and deep learning tools, including PyTorch 1.2. You can choose a variety of machine types to host your Data Science Virtual Machine, including those with GPUs. To learn more, refer to the Data Science Virtual Machine documentation.

From PyTorch to production

PyTorch is a popular open-source deep learning framework for creating and training models. It is built to use the power of GPUs for faster training and is deeply integrated with Python, making it easy to get started. However, deploying trained models to production has historically been a pain point for customers. For production environments, using Python for the core computations may not be suitable due to performance and multi-threading requirements. To address this challenge, we collaborated with the PyTorch community to make it easier to use PyTorch trained models in production.

PyTorch’s JIT compiler transitions models from eager mode to graph mode using tracing, TorchScript, or a mix of both. We then recommend using PyTorch’s built-in support for ONNX export. ONNX stands for Open Neural Network Exchange and is an open standard format for representing machine learning models. ONNX models can be inferenced using ONNX Runtime. ONNX Runtime is an inference engine for production scale machine learning workloads that are open source, cross platform, and highly optimized. Written in C++, it runs on Linux, Windows, and Mac. Its small binary size makes it suitable for a range of target devices and environments. It’s accelerated on CPU, GPU, and VPU thanks to Intel and NVIDIA who have integrated their accelerators with ONNX Runtime.

Training and production with PyTorch and ONNX Runtime

In PyTorch 1.2, we contributed enhanced ONNX export capabilities:

  • Support for a wider range of PyTorch models, including object detection and segmentation models such as mask RCNN, faster RCNN, and SSD
  • Support for models that work on variable length inputs
  • Export models that can run on various versions of ONNX inference engines
  • Optimization of models with constant folding
  • End-to-end tutorial showing export of a PyTorch model to ONNX and running inference in ONNX Runtime

You can deploy your own PyTorch models to various production environments with ONNX Runtime. Learn more at the links below:

  • Deploy to the cloud
  • Deploy to Windows apps
  • Deploy to Linux IoT ARM device

Next steps

We are very excited to see PyTorch continue to evolve and improve. We are proud of our support for and contributions to the PyTorch community. PyTorch 1.2 is now available on Azure—start your free trial today.

We look forward to hearing from you as you use PyTorch on Azure.

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: CLOUD

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025
  • Protecting Azure Infrastructure from silicon to systems

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,321)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in