Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / Throw Out That 3-Year Business Plan

Throw Out That 3-Year Business Plan

August 31, 2020 by cbn Leave a Comment

Here’s why real-time forecasting rules in 2020 (and how retraining your machine learning models can help with that).

Before the pandemic, companies had several tools to predict future outcomes. They could plan from several weeks to several years in advance and shape their machine learning models to deliver insights on what the future may hold — based on data, those models learned from the past. Long-term forecasting hasn’t always been completely accurate, but now, those models and plans are producing scenarios that aren’t realistic, making them unreliable to companies in need of direction amid the current economic disruption.

Image: Pixabay

Image: Pixabay

It’s time to throw out the three-year plans. Today’s world calls for a sharp short-term shift toward predictive models that focus on recent, real-time data. Companies need to be nimble and act at the fastest pace based on reliable, accurate predictions to shape their decision-making — especially as the importance of safety is at an all-time high, and the margin for error within budgets continues to thin.

As businesses look to recapture accurate data and analytics on their customers, they should embrace a new approach on their planning process: real-time forecasting.

Past results can no longer provide accurate future guidance  

Instead of taking the traditional approach of relying on historical data, this new approach leverages specific data that is only relevant based on the pandemic’s new conditions. Model your most recent data with current variables only. Historical data from prior to the pandemic won’t generate the accurate, high-value insights that your business needs. It’s also crucial that these models react quickly to keep pace with the rapid consumer behavior changes taking place.

Retraining models is an investment that will outlast the pandemic

Adapting models for the current situation is essential to short-term accuracy but making the move now will pay dividends as conditions continue to evolve long term. By retraining machine learning models and continuously testing their effectiveness, organizations will build up resiliency against the next crisis. Companies running outdated models are seeing significant drift on accuracy, highlighting the need for updated models that deliver more effective predictions. Data science teams must keep their models current to truly create a “real-time” forecast that is showcasing the scenarios most likely to unfold.

Significant change has already started, but it’s not too late to catch up

Across industries, the pandemic is producing challenges that companies have never faced previously. How can models relying on past data predict an accurate future, when the present is an untraveled trail? Capgemini research shows how drastically buying behaviors have jolted within transportation and retail, with an overwhelming focus on safety, hygiene, and ways to avoid contact. Producing a touchless customer experience with the latest automation capabilities is paramount to earning loyal consumers who appreciate efficiency, rather than added shopping stress during this difficult time. Companies must adapt quickly to these emerging trends and get a finger on the pulse of the industries they operate within. Real-time forecasting could go a long way toward delivering those insights. 

In the past six months, countless companies have seen budgets shrink, sales stall, supply chains in disarray and operations in overdrive. Organizations must get accurate visibility into what could be coming next. Customer patterns aren’t done changing and many may not settle into new, consistent routines for years to come. IT and data science must work in unison to produce relevant models that identify the most likely outcomes and get businesses into positions where they can make informed decisions that put them on the path toward economic recovery.

No one truly knows what’s coming next, but there’s plenty of technology at our disposal to come close with our predictions. Real-time forecasting is a way to effectively prepare for what’s to come. With so little data and even less history on this pandemic-influenced world, there aren’t many alternatives.

Dan Simion leads the AI & Analytics practice for Capgemini North America. He has more than 25 years of experience in data science, advanced analytics, and technology-enabled applications and solutions. Dan’s focus areas are artificial intelligence and machine learning, and his publications include “Marketing Analytics Capabilities,” “Harnessing the Power of Private Label,” and “Systems and Tools to Track Marketing Effectiveness.”

The InformationWeek community brings together IT practitioners and industry experts with IT advice, education, and opinions. We strive to highlight technology executives and subject matter experts and use their knowledge and experiences to help our audience of IT … View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.

More Insights

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: Uncategorized

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • Key network security takeaways from RSAC 2025
  • One year of Phi: Small language models making big leaps in AI
  • Adaptability by design: Unifying cloud and edge infrastructure trends 
  • Azure AI Foundry: Your GPS for the changing AI landscape
  • Accelerate AI innovation and business transformation: Scaling AI transformation with strategic cloud partnership

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,306)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (611)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in