Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / CLOUD / New in Stream Analytics: Machine Learning, online scaling, custom code, and more

New in Stream Analytics: Machine Learning, online scaling, custom code, and more

October 29, 2019 by cbn Leave a Comment

Azure Stream Analytics is a fully managed Platform as a Service (PaaS) that supports thousands of mission-critical customer applications powered by real-time insights. Out-of-the-box integration with numerous other Azure services enables developers and data engineers to build high-performance, hot-path data pipelines within minutes. The key tenets of Stream Analytics include Ease of use, Developer productivity, and Enterprise readiness. Today, we're announcing several new features that further enhance these key tenets. Let's take a closer look at these features:

Preview Features

Rollout of these preview features begins November 4th, 2019. Worldwide availability to follow in the weeks after. 

Online scaling

In the past, changing Streaming Units (SUs) allocated for a Stream Analytics job required users to stop and restart. This resulted in extra overhead and latency, even though it was done without any data loss.

With online scaling capability, users will no longer be required to stop their job if they need to change the SU allocation. Users can increase or decrease the SU capacity of a running job without having to stop it. This builds on the customer promise of long-running mission-critical pipelines that Stream Analytics offers today.

Change SUs on a Stream Analytics job while it is running

Change SUs on a Stream Analytics job while it is running.

C# custom de-serializers

Azure Stream Analytics has always supported input events in JSON, CSV, or AVRO data formats out of the box. However, millions of IoT devices are often programmed to generate data in other formats to encode structured data in a more efficient yet extensible format.

With our current innovations, developers can now leverage the power of Azure Stream Analytics to process data in Protobuf, XML, or any custom format. You can now implement custom de-serializers in C#, which can then be used to de-serialize events received by Azure Stream Analytics.

Extensibility with C# custom code

Azure Stream Analytics traditionally offered SQL language for performing transformations and computations over streams of events. Though there are many powerful built-in functions in the currently supported SQL language, there are instances where a SQL-like language doesn't provide enough flexibility or tooling to tackle complex scenarios.

Developers creating Stream Analytics modules in the cloud or on IoT Edge can now write or reuse custom C# functions and invoke them right in the query through User Defined Functions. This enables scenarios such as complex math calculations, importing custom ML models using ML.NET, and programming custom data imputation logic. Full-fidelity authoring experience is made available in Visual Studio for these functions.

Managed Identity authentication with Power BI

Dynamic dashboarding experience with Power BI is one of the key scenarios that Stream Analytics helps operationalize for thousands of customers worldwide.

Azure Stream Analytics now offers full support for Managed Identity based authentication with Power BI for dynamic dashboarding experience. This helps customers align better with their organizational security goals, deploy their hot-path pipelines using Visual Studio CI/CD tooling, and enables long-running jobs as users will no longer be required to change passwords every 90 days.

While this new feature is going to be immediately available, customers will continue to have the option of using the Azure Active Directory User-based authentication model.

Stream Analytics on Azure Stack

Azure Stream Analytics is supported on Azure Stack via IoT Edge runtime. This enables scenarios where customers are constrained by compliance or other reasons from moving data to the cloud, but at the same time wish to leverage Azure technologies to deliver a hybrid data analytics solution at the Edge.

Rolling out as a preview option beginning January 2020, this will offer customers the ability to analyze ingress data from Event Hubs or IoT Hub on Azure Stack, and egress the results to a blob storage or SQL database on the same. You can continue to sign up for preview of this feature until then.

Debug query steps in Visual Studio

We've heard a lot of user feedback about the challenge of debugging the intermediate row set defined in a WITH statement in Azure Stream Analytics query. Users can now easily preview the intermediate row set on a data diagram when doing local testing in Azure Stream Analytics tools for Visual Studio. This feature can greatly help users to breakdown their query and see the result step-by-step when fixing the code.

Local testing with live data in Visual Studio Code

When developing an Azure Stream Analytics job, developers have expressed a need to connect to live input to visualize the results. This is now available in Azure Stream Analytics tools for Visual Studio Code, a lightweight, free, and cross-platform editor. Developers can test their query against live data on their local machine before submitting the job to Azure. Each testing iteration takes less than two to three seconds on average, resulting in a very efficient development process.

Live Data Testing feature in Visual Studio Code

Live Data Testing feature in Visual Studio Code

Private preview for Azure Machine Learning

Real-time scoring with custom Machine Learning models

Azure Stream Analytics now supports high-performance, real-time scoring by leveraging custom pre-trained Machine Learning models managed by the Azure Machine Learning service, and hosted in Azure Kubernetes Service (AKS) or Azure Container Instances (ACI), using a workflow that requires users to write absolutely no code.

Users can build custom models by using any popular python libraries such as Scikit-learn, PyTorch, TensorFlow, and more to train their models anywhere, including Azure Databricks, Azure Machine Learning Compute, and HD Insight. Once deployed in Azure Kubernetes Service or Azure Container Instances clusters, users can use Azure Stream Analytics to surface all endpoints within the job itself. Users simply navigate to the functions blade within an Azure Stream Analytics job, pick the Azure Machine Learning function option, and tie it to one of the deployments in the Azure Machine Learning workspace.

Advanced configurations, such as the number of parallel requests sent to Azure Machine Learning endpoint, will be offered to maximize the performance.

You can sign up for preview of this feature now.

Feedback and engagement

Engage with us and get early glimpses of new features by following us on Twitter at @AzureStreaming.

The Azure Stream Analytics team is highly committed to listening to your feedback and letting the user's voice influence our future investments. We welcome you to join the conversation and make your voice heard via our UserVoice page.

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: CLOUD

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025
  • Protecting Azure Infrastructure from silicon to systems

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,321)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in