Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / IOT / Are IoT and cloud computing the future of data?

Are IoT and cloud computing the future of data?

January 21, 2020 by cbn Leave a Comment

With an estimated 29 billion connected devices expected to be in operation by 2022 – and over 75 billion Internet of Things (IoT) devices anticipated to be in use by 2025 worldwide – the Internet of Things is a major consideration for forward-thinking enterprises.

The abundance of IoT devices currently in use offers enterprises extensive quantities of data that can be used to create powerful insights and this is only expected to grow in the coming years, says Shivnath Babu, chief technology officer, Unravel Data. However, as enterprises deploy increasing numbers of smart devices, and the quantities of data generated increases, centralised cloud systems will play a fundamental role in ensuring these insights are being utilised smartly. As such, the proliferation of IoT proposes considerable DataOps challenges.

Difficulties handling data

With a great number of IoT devices come great quantities and types of data. For instance, IoT devices can provide types of data as varied as: customer sales, miles driven, GPS coordinates, humidity, number of persons present, vehicle speed, temperature and air quality. Many businesses are having difficulty handling the complexity and sheer quantity of data created by IoT and are finding that their data pipelines are becoming inefficient. For app-driven services that rely on real-time streaming, this is a significant issue.

To this end, personalised, real-time, streaming applications like Kafka, Spark, Kudu, Flink, or HBase are needed to manage the heavy big data requirements of modern cloud-delivered services. That being said, analysing streaming traffic data and generating statistical features requires complex and resource-consuming monitoring methods.

Although analysts can apply multiple detection methods simultaneously to the incoming data, this inevitably results in complexity and performance challenges. This is especially the case when applications span across multiple systems (e.g. interacting with Spark for computation, with YARN for resource allocation and scheduling, with HDFS or S3 for data access,or with Kafka or Flink for streaming). These deployments can become even more complex if they contain independent, user-defined programs as repeat data preprocessing or feature generation common in multiple applications.

Explosive IoT growth

Shivnath Babu

To create the cloud infrastructure necessary to sustain the explosive growth of IoT devices, current data management tools and processes aren’t up to the task. To manage the challenge presented by extensive IoT devices, many businesses are beginning to recognise the need for AI or ML-integrations.

These integrations augment the capabilities of data teams in making sense of all this data by enabling intelligent data operations that reduce the burden of manually sorting data. This helps data be routed to the right place faster, keep pace with business needs and sustain the real-time element of their dataops.

Often in these scenarios, the streaming application can lag behind in processing data in real-time and determining the root cause can be a cumbersome challenge for such a complex system. As such, a data deployment that relies on machine learning and artificial intelligence (AI) is far more likely to provide the performance, predictability and reliability needed when compared to alternatives.

To enable the efficient and continuous collection of data from IoT devices, machine learning algorithms have proven essential in enabling scrutiny of application execution, identifying the cause of potential failure, and generating recommendations for improving performance and resource usage. Another key benefit is that the implementation of such processes allows for organisations to enjoy lower costs and increased reliability.

Consider each use case

As such, it’s key to consider each individual use case and see what specific IoT challenge it is providing an answer to. By understanding the environment first, and the problems it presents for its respective organisation, IT teams are able to make a faster path to implementing the necessary solutions. Whether that be machine learning or AI, delivering an IoT-based deployment is contingent on augmenting the data team with automation to manage the complexity that emerges.

The author is Shivnath Babu, chief technology officer, Unravel Data.

Comment on this article below or via Twitter: @IoTNow_OR @jcIoTnow

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: IOT

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025
  • Protecting Azure Infrastructure from silicon to systems

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,321)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in