Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / IOT / How to implement augmented analytics: 3 important caveats

How to implement augmented analytics: 3 important caveats

May 15, 2020 by cbn Leave a Comment

With augmented analytics, keep in mind that users might not be data literate. Find out what else you need to know about using augmented analytics to pull insights from big data.

Digital marketing campaign data analytics report with metrics and key performance indicators (KPI) on information dashboard for advertisement strategy on internet, business person in office

Image: iStockphoto/NicoElNino

Conversations about big data and analytics have emphasized the importance of leveraging data for the past decade. What hasn’t been discussed as often is the need to leverage the ability of people to understand data and apply this understanding to the business.

The need to democratize data usage and understanding beyond traditional dashboards and reports has been a major driver of augmented analytics, which Gartner defines as “the use of machine learning (ML) and natural language processing (NLP) to enhance data analytics, data sharing, and business intelligence.”

SEE: Cheat sheet: Data management (free PDF) (TechRepublic)

What is augmented analytics?

More about Big Data

Instead of waiting for a data scientist or an IT specialist to assemble complex data models and algorithms to query data, an end user without a formal background in data science can submit a request in a natural language like English, which a software engine translates into machine-understandable code. The code automatically creates the required analytics models to detect patterns, trends, and anomalies in the data to answer the request.

For purposes of pattern and trend recognition, machine learning is employed. ML discovers repetitive patterns—or anomalies in patterns—in the data, which in turn lead to business insights. Once a trend or pattern is discovered, a predictive software engine performs a root cause analysis to identify the most probable factors causing the trend. 

At the end of the process, the insights uncovered in this series of automated processes are converted back into a natural language such as English and delivered to the user. This enables the user to act on the information.

What are examples of augmented analytics in action?

An agricultural producer looks at historical harvest and sales trends for strawberries, which typically have an early harvest in Mexico and a later-season harvest in California. What the producer overlooks and the augmented analytics system picks up is an anomaly in the growing season trends data. The system looks further, trying to find the root cause of the anomaly, and discovers that temperatures have steadily risen due to climate change. Now the growing seasons for strawberries in Mexico and California are beginning to overlap. This creates a projected oversupply of strawberries in the market, which threatens to depress prices and squeeze profits. 

A human resources manager wants to learn why employees leave the company. She sees that in some cases  there are retirements, and in other cases employees find better opportunities. In the past, she might have been satisfied to write a report, but the augmented analytics tool she is using, which includes machine learning, also sees a pattern of employees leaving in greater numbers from the company’s Atlanta and San Diego offices. In a root cause analysis, the system deduces that there have been excessive management and organizational changes at both offices. The system concludes that the excessive change may have driven some employees to leave, prompting the HR manager to consider whether too much change is creating an unstable and uncomfortable work environment.

SEE: 10 ways data and analytics will impact businesses (TechRepublic)

What should you know when implementing augmented analytics?

The promise of augmented analytics is to eliminate longer lead times to insight for the end business. This is possible because end users can now query data in a natural language like English, and a system can then go to work with machine learning and self-developed algorithms to provide new insights. It uses data patterns that it discerns can augment what users have already asked for.

The process isn’t flawless,  but neither is the process of algorithm development and data modeling that data scientists use. Companies should consider adding augmented analytics to their data query strategies, but with some caveats.

Augmented analytics are only as good as the people who use them. Many end users are not data literate. Data literacy is, “understanding what data mean, including how to read graphs and charts appropriately, draw correct conclusions from data, and recognize when data are being used in misleading or inappropriate ways.” These skills typically aren’t asked for in the job requirements of production supervisors, customer service managers, or sales executives. 

Augmented analytics should be a carefully orchestrated addition to existing data science and analytics applications. This is because data literacy is likely to be underdeveloped in most organizations. When augmented analytics is used, data scientists and IT data analysts should be heavily engaged in the process of implementing it.

The vendor you choose for your augmented analytics is important. If the vendor doesn’t have a road map on how it’s going to further develop the product, or have a support and training system robust enough to impart data literacy and tools competence to citizen data analysts, it should probably be avoided. 

Data, Analytics and AI Newsletter

Learn the latest news and best practices about data science, big data analytics, and artificial intelligence. Delivered Mondays

Sign up today

Also see

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: IOT

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025
  • Protecting Azure Infrastructure from silicon to systems

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,321)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in