Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / CLOUD / MLOps—the path to building a competitive edge

MLOps—the path to building a competitive edge

January 21, 2020 by cbn Leave a Comment

Enterprises today are transforming their businesses using Machine Learning (ML) to develop a lasting competitive advantage. From healthcare to transportation, supply chain to risk management, machine learning is becoming pervasive across industries, disrupting markets and reshaping business models.

Organizations need the technology and tools required to build and deploy successful Machine Learning models and operate in an agile way. MLOps is the key to making machine learning projects successful at scale. What is MLOps ? It is the practice of collaboration between data science and IT teams designed to accelerate the entire machine lifecycle across model development, deployment, monitoring, and more. Microsoft Azure Machine Learning enables companies to fully embrace MLOps practices will and truly be able to realize the potential of AI in their business.

One great example of a customer transforming their business with Machine Learning and MLOps is TransLink. They support Metro Vancouver’s transportation network, serving 400 million total boarding’s from residents and visitors as of 2018. With an extensive bus system spanning 1,800 sq. kilometers, TransLink customers depend heavily on accurate bus departure times to plan their journeys.

To enhance customer experience, TransLink deployed 18,000 different sets of Machine Learning models to better predict bus departure times that incorporate factors like traffic, bad weather, and other schedule disruptions. Using MLOps with Azure Machine Learning they were able to manage and deliver the models at scale.

“With MLOps in Azure Machine Learning, TransLink has moved all models to production and improved predictions by 74 percent, so customers can better plan their journey on TransLink’s network. This has resulted in a 50 percent reduction on average in customer wait times at stops.”–Sze-Wan Ng, Director of Analytics & Development, TransLink.

Johnson Controls is another customer using Machine Learning Operations at scale. For over 130 years, they have produced fire, HVAC and security equipment for buildings. Johnson Controls is now in the middle of a smart city revolution, with Machine Learning being a central aspect of their equipment maintenance approach.

Johnson Controls runs thousands of chillers with 70 different types of sensors each, streaming terabytes of data. MLOps helped put models into production in a timely fashion, with a repeatable process, to deliver real-time insights on maintenance routines. As a result, chiller shutdowns could be predicted days in advance and mitigated effectively, delivering cost savings and increasing customer satisfaction.

“Using the MLOps capabilities in Azure Machine Learning, we were able to decrease both mean time to repair and unplanned downtime by over 66 percent, resulting in substantial business gains.”–Vijaya Sekhar Chennupati, Applied Data Scientist at Johnson Controls

Getting started with MLOps

To take full advantage of MLOps, organizations need to apply the same rigor and processes of other software development projects.

To help organizations with their machine learning journey, GigaOm developed the MLOps vision report that includes best practices for effective implementation and a maturity model.

Maturity is measured through five levels of development across key categories such as strategy, architecture, modeling, processes, and governance. Using the maturity model, enterprises can understand where they are and determine what steps to take to ‘level up’ and achieve business objectives.

Building MLOps maturity

“Organizations can address the challenges of developing AI solutions by applying MLOps and implementing best practices. The report and MLOps maturity model from GigaOm can be a very valuable tool in this journey,”– Vijaya Sekhar Chennupati, Applied Data Scientist at Johnson Controls.

To learn more, read the GigaOm report and make machine learning transformation a reality for your business.

More information

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: CLOUD

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • How Azure Cobalt 100 VMs are powering real-world solutions, delivering performance and efficiency results
  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,322)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in