Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / 4 Machine Learning Challenges for Threat Detection

4 Machine Learning Challenges for Threat Detection

May 4, 2020 by cbn Leave a Comment

While ML can dramatically enhance an organization’s security posture, it is critical to understand some of its challenges when designing security strategies.

Image: NicoElNino - stock.adobe.com

Image: NicoElNino – stock.adobe.com

The growth of machine learning and its ability to provide deep insights using big data continues to be a hot topic. Many C-level executives are developing deliberate ML initiatives to see how their companies can benefit, and cybersecurity is no exception. Most information security vendors have adopted some form of ML, however it’s clear that it isn’t the silver bullet some have made it out to be.

While ML solutions for cybersecurity can and will provide a significant return on investment, they do face some challenges today. Organizations should be aware of a few potential setbacks and set realistic goals to realize ML’s full potential.

False positives and alert fatigue

The greatest criticism of ML-detection software is the “impossible” number of alerts it generates — think millions of alerts per day, effectively delivering a denial-of-service attack against analysts. This is particularly true of “static analysis” approaches that rely heavily on how threats look.

Even an ML-based detection solution that is 97% accurate may not help because, simply put, the math is not favorable.

Let’s say organizations have one threat among 10,000 users on their network. Thanks to Bayes’ law, we can calculate an alert is truly a positive attack by multiplying 0.97 (for 97% accuracy) by the chance of an actual threat amongst all users, or 1/10,000. This means that even with 97% accuracy, the actual likelihood of an alert being a real attack is 0.0097%!

Since improving beyond 97% may not be feasible, the best way to address this is to limit the population under evaluation by whitelisting or prior filtering with domain expertise. This could mean focusing on highly credentialed, privileged users or a specific vital part of the business unit.

Dynamic environments

ML algorithms work by learning the environment and establishing baseline norms before they monitor for anomalous events that can indicate a compromise. However, if the IT enterprise is constantly reinventing itself to meet business agility needs and the dynamic environment doesn’t have a steady baseline, the algorithm cannot effectively determine what is normal and will issue alerts on completely benign events.

To help minimize this impact, security teams must work within DevOps environments to know what changes are being made and update their tooling accordingly. The DevSecOps (development, security, and operations) acronym is beginning to gain traction since each of these elements should be synchronized and work within a shared consciousness.

Context

ML’s power comes from its ability to conduct massive multi-variable correlation to develop its predictions. However, when a real alert makes its way to a security analyst’s queue, this powerful correlation takes the appearance of a black box and leaves little more than a ticket that says, “Alert.” From there, an analyst must comb through logs and events to figure out why it triggered the action.

The best way to minimize this challenge is to enable a security operations center with tools that can quickly filter through log data on the triggering entity. This is an area where artificial intelligence can help automate and speed data contextualization. Data visualization tools can help as well by providing a fast timeline of events coupled with an understanding of a specific environment. A security analyst can then determine rapidly why the ML software sent the alert and whether it is valid.

Anti-ML attacks

The final challenge for ML is hackers who are quickly able to adapt and bypass detection. When that does occur, it can have catastrophic effects, as recent hackers demonstrated by causing a Tesla to accelerate to 85 MPH by altering a 35 MPH sign on a road.

ML in security is no different. A perfect example is an ML-network-detection algorithm that uses byte analysis to very effectively determine whether traffic is benign or shellcode. Hackers adapted quickly by using polymorphic blending attacks, padding their shellcode attacks with additional bytes to alter the byte frequency and fully bypass detection algorithms. It’s more ongoing proof that no one tool is bulletproof and security teams need to constantly assess their security posture and stay educated on the latest attack trends.

ML can be extremely effective in enabling and advancing security teams. The ability to automate detection and correlate data can save a significant amount of time for security practitioners.

However, the key to an improved security posture is human-machine teaming where a symbiotic relationship exists between machine (an evolving library of indicators of compromise) and man (penetration testers and a cadre of mainframe white-hat hackers). ML brings the speed and agility needed to stay ahead of the curve, and humans bring qualities that it can’t (yet) replicate — logic, emotional reasoning, and decision-making skills based on experiential knowledge.

Christopher Perry is the Lead Product Manager for BMC AMI for Security at BMC Software. Perry got his start in cybersecurity while studying computer science at the United States Military Academy. While assigned to Army Cyber Command, Perry helped define expeditionary cyberspace operations as a company commander and led over 70 soldiers conducting offensive operations. He is currently getting his master’s degree in Computer Science with a focus in Machine Learning at Georgia Institute of Technology.

The InformationWeek community brings together IT practitioners and industry experts with IT advice, education, and opinions. We strive to highlight technology executives and subject matter experts and use their knowledge and experiences to help our audience of IT … View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.

More Insights

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: Uncategorized

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • How Azure Cobalt 100 VMs are powering real-world solutions, delivering performance and efficiency results
  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,322)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in