Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / CIOs Need AI Platforms, Not Just Tools

CIOs Need AI Platforms, Not Just Tools

May 21, 2020 by cbn Leave a Comment

Open source tools are crucial to machine learning development, but if you want to manage those models in the enterprise, you need a platform.

Trying to do more with less during the pandemic? While organizations may not be jumping into big investments right now, everyone is looking to conserve cash and maximize revenue in these uncertain times. Artificial intelligence and machine learning can be a part of achieving those goals, but there are some challenges to gaining the benefits.

“Machine learning relies on open source,” Bradley Shimmin, Omdia analyst for data and analytics, told InformationWeek. (Omdia and InformationWeek are both owned by Informa) “In terms of turning that open source into an actual solution in the enterprise, it takes some doing.”

Image: ra2 studio - stock.adobe.com

Image: ra2 studio – stock.adobe.com

A new report from Omdia can help provide a roadmap for organizations looking to gain those benefits quickly. The analyst research firm broke out some of the leading platforms to help organizations move early efforts to machine learning at scale with a platform approach.

The report names a handful of vendors from across the spectrum of platform providers as leaders in the space, to give organizations a sense of their options for managing machine learning at scale in the enterprise.

Shimmin noted that the vendors selected as leaders don’t always compete with each other, and they may represent different specialties in the field.

But what all of these players will help organizations do is “turn what is a multi-year investment into something you can do in a shorter time. AI and ML can optimize business and drive new areas of innovation,” Shimmin said.

“Given the fact that so many industries are trying to respond to a global pandemic makes that idea even more important,” he said. “If your survival as a company depends on your ability to innovate quickly, find a new revenue stream, and extract every bit of value you can, AI and ML really can offer that.”

The platform approach is a little different from where many machine learning professionals started. In school and at startups they built their project portfolios by using open source tools and libraries. But evolving any project from experimentation with a series of models to something that can be integrated with enterprise decision-making and operations takes a whole other level of effort.

Some pundits have argued that the wide array of open source tools, while brilliant for developing these individual projects, don’t meet muster when it comes to coordinating and managing a machine learning practice for deployment at scale.

Organizations are coming to recognize that these open source tools and libraries hold an important place in a larger ecosystem of machine learning technology within enterprises. Yet the real power of these tools can only be felt when a full platform can be deployed to wrangle the tools and models. Open source and enterprise platforms must be used together.

“To create meaningful ML applications, it is necessary to understand the data that goes into an application, its provenance, how it is pre- and post-processed,” wrote report author Michael Azoff. “…We talk of platforms rather than tools because these solutions span the whole ML development lifecycle and typically encompass multiple tools that are ideally accessed from one studio or console environment.”

Omdia looked at a selection of eight companies across the spectrum of machine learning platforms. For public cloud companies it considered Microsoft and IBM. For a long-established analytics and ML vendor it looked at SAS. For relatively new ML vendors for general development it looked at C3.ai, Dataiku, H20.ai, and Petuum. And for a relatively new ML vendor dedicated to one task it looked at Evolution AI.

While the list is not exhaustive, Azoff notes, it “should provide a starting point for shortlisting vendors for further evaluation and proof-of-concept trials.” All the platforms covered in the report provide support for the full ML lifecycle, according to Azoff.

That said, most of the companies included in the report were ranked as leaders, including Microsoft, SAS, IBM, C3.ai, and Dataiku. H20.ai and Petuum were challengers, and Evolution AI was a follower. Shimmin said that future reports will look at other technologies for machine learning, including Amazon SageMaker suite.

As for enterprise response to the pandemic, Shimmin said the anecdotal evidence he’s seen so far is that investment in AI and machine learning has not slowed, and that it may be increasing.

“Those solutions can optimize your business to cut costs and make you more resilient to the change we are seeing now,” he said. “It can also help drive new business which can also make you more resilient. It really can drive resiliency across highly disruptive market changes.”

For more on AI and machine learning, check out these articles:

Using Analytics to Improve IT Operations and Services

Automating and Educating Business Processes with RPA, AI and ML

Adapting Cloud Security and Data Management Under Quarantine

Why Everyone’s Data and Analytics Strategy Just Blew Up

Jessica Davis has spent a career covering the intersection of business and technology at titles including IDG’s Infoworld, Ziff Davis Enterprise’s eWeek and Channel Insider, and Penton Technology’s MSPmentor. She’s passionate about the practical use of business intelligence, … View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.

More Insights

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: Uncategorized

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • How Azure Cobalt 100 VMs are powering real-world solutions, delivering performance and efficiency results
  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,322)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in