Bookkeeping Service Providers

  • Accounting
  • Bookkeeping
  • US Taxation
  • Financial Planning
  • Accounting Software
  • Small Business Finance
You are here: Home / Can Artificial Intelligence Help Increase Diversity in IT?

Can Artificial Intelligence Help Increase Diversity in IT?

August 5, 2020 by cbn Leave a Comment

Applied properly, AI might help bridge the diversity gap in IT by assisting with job postings, evaluating resumes and standardizing the interviewing process.

Technology companies are poster children for diversity problems in the workforce. Although they far surpass the national average when hiring Asian Americans, Brookings found African Americans and Latinos were employed in tech at half the rate as they were in all other professions. Women also lag far behind their male counterparts. There is no shortage of theories as to why these gaps persist, but no solution to date has made a significant dent in the industries’ problem. Is it time to look at artificial intelligence to eradicate bias from our hiring process?

First, we have to deal with the elephant in the room. Amazon had a well-publicized failure when they tried to use AI for this very purpose. Their recruiting tool developed a learned gender bias, boosting male applicants over females. A model is only as good as its data. If you fed it thousands of resumes where 70% are male, what conclusions do you think it would draw concerning the equality of the sexes?

Image: Jakub Krechowicz - stock.adobe.com

Image: Jakub Krechowicz – stock.adobe.com

There are three key areas of focus when looking at how artificial intelligence can help remove bias from our hiring process. These are creating job postings, evaluating resumes, and interviewing candidates. 

You may not realize it, but your perfectly crafted job ad is unknowingly discouraging qualified candidates from applying. In a ZipRecruiter study, 70% of job postings contained masculine words. This finding was pervasive across all industries. When wording was changed to be more gender neutral (using words like support and understand versus aggressive or leader), hiring managers saw a 42% increase in responses. So how does AI spot these imbalances? By allowing the algorithm to churn over millions of job ads and their corresponding resumes, it can discern patterns hiding in the data. By simply using inclusive writing in our postings, we won’t turn away qualified applicants at the door and will maximize the diversity of our selection pool. 

We may have a resume pool brimming with diversity, but we’ve exacerbated our next problem — evaluating resumes. A single job posting may attract 100 resumes. With the recent explosion of remote work, the response rate can get multiplied even further. It’s not possible for humans to fairly evaluate hundreds of candidates. We unknowingly lean on our biases to weed out candidates that don’t fit the preset model in our head. Did they go to the right college? Where did they work last? Were they referred by an employee? Each one of these qualifiers slice away diversity from our applicant pool. Artificial intelligence can help. When taking a skills-based approach, you level the playing field as AI purposely ignores all the demographic details to zero in on qualifications. It does this while digesting thousands of resumes in seconds. Still, we have to be careful. If we feed our model garbage, it will produce garbage. Calibrating our algorithm on the firm’s top performers may seem ideal on paper, but unless you already have a diverse workforce, you are only perpetuating your stale hiring practices.

Interviews should be highly structured where each candidate is presented with the same batch of questions. This rarely happens in an actual interview. Real-life interactions tend to be more fluid, less disciplined and highly subjective. It’s impossible to isolate all the outside variables because no two interviews will be the same. Using AI, digital interviews remove these limitations by relaying the question set then evaluating how a candidate responds. Automated interviews aren’t without their problems. Many high-level candidates are turned off being forced to deal with a robot. They perceive they aren’t worth the companies’ time. Facial recognition is also being deployed in certain instances, which has been a hotbed of controversy.

AI is already ubiquitous in the HR industry. Sixty seven percent of hiring managers and recruiters reported that artificial intelligence was a significant time saver, according to a LinkedIn survey. Handing that much power over to a computer makes many uneasy, but we have to realize that AI is designed by humans and trained using historical data. If not governed appropriately, AI will simply persist long held biases that already exist throughout the organization. Artificial intelligence models must be audited regularly to ensure the data generated mirrors the intended result. Another problem is the AI engineers themselves. It is a male dominated profession. According to AI Now, 85% of Facebook’s AI researchers are male. At Google, it’s 90% and 2.5% of its workforce is black. It’s fair to wonder how AI can reflect minority voices when there are none at the table.

Artificial intelligence isn’t perfect and can fall prey to current hiring pitfalls if we aren’t careful. With proper auditing and governance, AI can help us bridge the gap to a more diverse workforce.

Mark Runyon works as a principal consultant for Improving in Atlanta, Georgia. He specializes in the architecture and development of enterprise applications, leveraging cloud technologies. He is a frequent speaker and contributing writer for the Enterprisers Project.
The InformationWeek community brings together IT practitioners and industry experts with IT advice, education, and opinions. We strive to highlight technology executives and subject matter experts and use their knowledge and experiences to help our audience of IT … View Full Bio

We welcome your comments on this topic on our social media channels, or [contact us directly] with questions about the site.

More Insights

Share on FacebookShare on TwitterShare on Google+Share on LinkedinShare on Pinterest

Filed Under: Uncategorized

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • September 2025
  • August 2025
  • July 2025
  • June 2025
  • May 2025
  • April 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • November 2024
  • October 2024
  • July 2024
  • June 2024
  • May 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • October 2023
  • September 2023
  • August 2023
  • July 2023
  • June 2023
  • May 2023
  • April 2023
  • March 2023
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • May 2021
  • April 2021
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019
  • February 2019
  • January 2019
  • December 2018
  • November 2018
  • October 2018
  • September 2018
  • August 2018
  • July 2018
  • June 2018
  • May 2018
  • April 2018
  • March 2018
  • February 2018
  • January 2018
  • December 2017
  • November 2017
  • October 2017
  • September 2017
  • August 2017
  • July 2017
  • May 2017
  • April 2017
  • March 2017
  • February 2017
  • January 2017
  • March 2016

Recent Posts

  • How Azure Cobalt 100 VMs are powering real-world solutions, delivering performance and efficiency results
  • FabCon Vienna: Build data-rich agents on an enterprise-ready foundation
  • Agent Factory: Connecting agents, apps, and data with new open standards like MCP and A2A
  • Azure mandatory multifactor authentication: Phase 2 starting in October 2025
  • Microsoft Cost Management updates—July & August 2025

Recent Comments

    Categories

    • Accounting
    • Accounting Software
    • BlockChain
    • Bookkeeping
    • CLOUD
    • Data Center
    • Financial Planning
    • IOT
    • Machine Learning & AI
    • SECURITY
    • Uncategorized
    • US Taxation

    Categories

    • Accounting (145)
    • Accounting Software (27)
    • BlockChain (18)
    • Bookkeeping (205)
    • CLOUD (1,322)
    • Data Center (214)
    • Financial Planning (345)
    • IOT (260)
    • Machine Learning & AI (41)
    • SECURITY (620)
    • Uncategorized (1,284)
    • US Taxation (17)

    Subscribe Our Newsletter

     Subscribing I accept the privacy rules of this site

    Copyright © 2025 · News Pro Theme on Genesis Framework · WordPress · Log in